HyperAIHyperAI

Command Palette

Search for a command to run...

20 days ago

Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR

Abdelaziz Bounhar Hadi Abdine Evan Dufraisse Ahmad Chamma Amr Mohamed Dani Bouch Michalis Vazirgiannis Guokan Shang

Shorter but not Worse: Frugal Reasoning via Easy Samples as Length
  Regularizers in Math RLVR

Abstract

Large language models (LLMs) trained for step-by-step reasoning often become excessively verbose, raising inference cost. Standard Reinforcement Learning with Verifiable Rewards (RLVR) pipelines filter out easy'' problems for training efficiency, leaving the model to train primarily on harder problems that require longer reasoning chains. This skews the output length distribution upward, resulting in a model that conflatesthinking longer'' with ``thinking better''. In this work, we show that retaining and modestly up-weighting moderately easy problems acts as an implicit length regularizer. Exposing the model to solvable short-chain tasks constrains its output distribution and prevents runaway verbosity. The result is emph{emergent brevity for free}: the model learns to solve harder problems without inflating the output length, despite the absence of any explicit length penalization. RLVR experiments using this approach on Qwen3-4B-Thinking-2507 (with a 16k token limit) achieve baseline pass@1 AIME25 accuracy while generating solutions that are, on average, nearly twice as short. The code is available at https://github.com/MBZUAI-Paris/Frugal-AI{GitHub}, with datasets and models on https://huggingface.co/collections/MBZUAI-Paris/k2-think-mini-68dcfa8b114686a4bd3dc2bc{Hugging Face}.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR | Papers | HyperAI