HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Zeroshot Video Question Answer
Zeroshot Video Question Answer On Msrvtt Qa
Zeroshot Video Question Answer On Msrvtt Qa
Metriken
Accuracy
Confidence Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Confidence Score
Paper Title
Repository
Chat-UniVi-7B
55.0
3.1
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
TS-LLaVA-34B
66.2
3.6
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
BT-Adapter (zero-shot)
51.2
2.9
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
Video-LLaVA-7B
59.2
3.5
Video-LLaVA: Learning United Visual Representation by Alignment Before Projection
LLaMA-VID-7B (2 Token)
57.7
3.2
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
IG-VLM
63.8
3.5
An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM
Omni-VideoAssistant
55.3
3.3
OmniDataComposer: A Unified Data Structure for Multimodal Data Fusion and Infinite Data Generation
Elysium
67.5
3.2
Elysium: Exploring Object-level Perception in Videos via MLLM
MovieChat
52.7
2.6
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
SUM-shot+Vicuna
56.8
-
Shot2Story20K: A New Benchmark for Comprehensive Understanding of Multi-shot Videos
CAT-7B
62.1
3.5
CAT: Enhancing Multimodal Large Language Model to Answer Questions in Dynamic Audio-Visual Scenarios
BT-Adapter (zero-shot)
51.2
2.9
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
VideoChat2
54.1
3.3
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
Vista-LLaMA-7B
60.5
3.3
Vista-LLaMA: Reliable Video Narrator via Equal Distance to Visual Tokens
-
Tarsier (34B)
66.4
3.7
Tarsier: Recipes for Training and Evaluating Large Video Description Models
Video-LaVIT
59.3
3.3
Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
Video Chat-7B
45.0
2.5
VideoChat: Chat-Centric Video Understanding
VideoGPT+
60.6
3.6
VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
Video-ChatGPT-7B
49.3
2.8
Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
PLLaVA (34B)
68.7
3.6
PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
0 of 30 row(s) selected.
Previous
Next