HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Zero-Shot-Videosfragebeantwortung
Zero Shot Video Question Answer On Intentqa
Zero Shot Video Question Answer On Intentqa
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
ENTER
71.5
ENTER: Event Based Interpretable Reasoning for VideoQA
LVNet
71.1
Too Many Frames, Not All Useful: Efficient Strategies for Long-Form Video QA
TS-LLaVA-34B
67.9
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
VidCtx (7B)
67.1
VidCtx: Context-aware Video Question Answering with Image Models
VideoTree (GPT4)
66.9
VideoTree: Adaptive Tree-based Video Representation for LLM Reasoning on Long Videos
IG-VLM
65.3
An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM
LLoVi (GPT-4)
64.0
A Simple LLM Framework for Long-Range Video Question-Answering
SeViLA (4B)
60.9
Self-Chained Image-Language Model for Video Localization and Question Answering
SlowFast-LLaVA-34B
60.1
SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language Models
LangRepo (12B)
59.1
Language Repository for Long Video Understanding
LLoVi (7B)
53.6
A Simple LLM Framework for Long-Range Video Question-Answering
Mistral (7B)
50.4
Mistral 7B
Random
20.0
-
0 of 13 row(s) selected.
Previous
Next
Zero Shot Video Question Answer On Intentqa | SOTA | HyperAI