HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Zero-Shot Aktionserkennung
Zero Shot Action Recognition On Hmdb51
Zero Shot Action Recognition On Hmdb51
Metriken
Top-1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 Accuracy
Paper Title
MOV (ViT-L/14)
64.7
Multimodal Open-Vocabulary Video Classification via Pre-Trained Vision and Language Models
OTI(ViT-L/14)
64
Orthogonal Temporal Interpolation for Zero-Shot Video Recognition
BIKE
61.4
Bidirectional Cross-Modal Knowledge Exploration for Video Recognition with Pre-trained Vision-Language Models
MOV (ViT-B/16)
60.8
Multimodal Open-Vocabulary Video Classification via Pre-Trained Vision and Language Models
IMP-MoE-L
59.1
Alternating Gradient Descent and Mixture-of-Experts for Integrated Multimodal Perception
VideoCoCa
58.7
VideoCoCa: Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
Text4Vis
58.4
Revisiting Classifier: Transferring Vision-Language Models for Video Recognition
TC-CLIP
56.0
Leveraging Temporal Contextualization for Video Action Recognition
OST
55.9
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition
MAXI
52.3
MAtch, eXpand and Improve: Unsupervised Finetuning for Zero-Shot Action Recognition with Language Knowledge
VicTR (ViT-B/16)
51.0
VicTR: Video-conditioned Text Representations for Activity Recognition
LoCATe-GAT
50.7
LoCATe-GAT: Modeling Multi-Scale Local Context and Action Relationships for Zero-Shot Action Recognition
X-CLIP
44.6
Expanding Language-Image Pretrained Models for General Video Recognition
CLASTER
43.2
CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action Recognition
ResT
41.1
Cross-modal Representation Learning for Zero-shot Action Recognition
AURL
39
Alignment-Uniformity aware Representation Learning for Zero-shot Video Classification
JigsawNet
38.7
Rethinking Zero-shot Action Recognition: Learning from Latent Atomic Actions
SPOT
35.9
Synthetic Sample Selection for Generalized Zero-Shot Learning
ER-ZSAR
35.3
Elaborative Rehearsal for Zero-shot Action Recognition
E2E
32.7
Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications
0 of 29 row(s) selected.
Previous
Next