HyperAI

Weather Forecasting On Sd

Metriken

MSE (t+1)
MSE (t+6)

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameMSE (t+1)MSE (t+6)
neural-dynamics-on-complex-networks0.5705 ± 0.00570.7414 ± 0.0294
climate-modeling-with-neural-diffusion0.3561 ± 0.00550.7301 ± 0.0048
climate-modeling-with-neural-advection0.1430 ± 0.02800.6516 ± 0.0657
graph-networks-as-learnable-physics-engines0.6543 ± 0.11950.9872 ± 0.2425
neural-dynamics-on-complex-networks0.5296 ± 0.02740.7542 ± 0.0730
neural-dynamics-on-complex-networks0.5291 ± 0.05780.7862 ± 0.0475
graph-networks-as-learnable-physics-engines0.7007 ± 0.08481.0422 ± 0.0673
adaptive-graph-convolutional-recurrent0.2010 ± 0.01881.0181 ± 0.1275
neural-dynamics-on-complex-networks0.5754 ± 0.01800.7954 ± 0.0110
differentiable-physics-informed-graph0.5149 ± 0.08310.6714 ± 0.1106