Weakly Supervised Video Anomaly Detection On
Metriken
AUC-ROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Modellname | AUC-ROC | Paper Title | Repository |
---|---|---|---|
OPVAD | 96.98 | - | - |
S3R | 97.48 | Self-supervised Sparse Representation for Video Anomaly Detection | |
CLAV-CoMo | 97.59 | Look Around for Anomalies: Weakly-Supervised Anomaly Detection via Context-Motion Relational Learning | - |
MIL-Rank | 85.33 | Real-world Anomaly Detection in Surveillance Videos | - |
DMU | 97.57 | - | - |
OCC-WS | 96.33 | - | - |
RTFM | 97.21 | Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning | - |
BN-SVP | 96.00 | - | - |
UML | 96.78 | - | - |
MIST | 94.83 | MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection | - |
RTFM-BERT | 97.54 | - | - |
STPrompt | 97.81 | Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts | - |
VadCLIP | 97.49 | - | - |
AR-Net | 91.24 | Weakly Supervised Video Anomaly Detection via Center-guided Discriminative Learning | - |
0 of 14 row(s) selected.