HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Visuelles Fragebeantworten (VQA)
Visual Question Answering Vqa On
Visual Question Answering Vqa On
Metriken
ANLS
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
ANLS
Paper Title
Gemini Ultra (pixel only)
80.3
Gemini: A Family of Highly Capable Multimodal Models
SMoLA-PaLI-X Specialist
66.2
Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts
ScreenAI 5B (4.62 B params, w/ OCR)
65.90
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
SMoLA-PaLI-X Generalist
65.6
Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts
UDOP (aux)
63.0
Unifying Vision, Text, and Layout for Universal Document Processing
PaLI-3 (w/ OCR)
62.4
PaLI-3 Vision Language Models: Smaller, Faster, Stronger
TILT-Large
61.20
Going Full-TILT Boogie on Document Understanding with Text-Image-Layout Transformer
PaLI-3
57.8
PaLI-3 Vision Language Models: Smaller, Faster, Stronger
ChatGPT 3.5 with LAPDoc Prompt (SpatialFormat)
54.9
LAPDoc: Layout-Aware Prompting for Documents
PaLI-X (Single-task FT w/ OCR)
54.8
PaLI-X: On Scaling up a Multilingual Vision and Language Model
Claude + LATIN-Prompt
54.51
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
PaLI-X (Multi-task FT)
50.7
PaLI-X: On Scaling up a Multilingual Vision and Language Model
PaLI-X (Single-task FT)
49.2
PaLI-X: On Scaling up a Multilingual Vision and Language Model
GPT-3.5 + LATIN-Prompt
48.98
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
DocFormerv2-large
48.8
DocFormerv2: Local Features for Document Understanding
UDOP
47.4
Unifying Vision, Text, and Layout for Universal Document Processing
DUBLIN (variable resolution)
42.6
DUBLIN -- Document Understanding By Language-Image Network
Pix2Struct-large
40
Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding
Pix2Struct-base
38.2
Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding
MatCha
37.2
MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering
0 of 21 row(s) selected.
Previous
Next
Visual Question Answering Vqa On | SOTA | HyperAI