HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Visuelles Fragebeantworten (VQA)
Visual Question Answering On Vqa V2 Test Std
Visual Question Answering On Vqa V2 Test Std
Metriken
overall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
overall
Paper Title
BEiT-3
84.03
Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks
mPLUG-Huge
83.62
mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal Skip-connections
ONE-PEACE
82.52
ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities
X2-VLM (large)
81.8
X$^2$-VLM: All-In-One Pre-trained Model For Vision-Language Tasks
VLMo
81.30
VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts
SimVLM
80.34
SimVLM: Simple Visual Language Model Pretraining with Weak Supervision
X2-VLM (base)
80.2
X$^2$-VLM: All-In-One Pre-trained Model For Vision-Language Tasks
VAST
80.19
-
VALOR
78.62
VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
Prompt Tuning
78.53
Prompt Tuning for Generative Multimodal Pretrained Models
Prismer
78.49
Prismer: A Vision-Language Model with Multi-Task Experts
MSR + MS Cog. Svcs., X10 models
77.45
VinVL: Revisiting Visual Representations in Vision-Language Models
MSR + MS Cog. Svcs.
76.63
VinVL: Revisiting Visual Representations in Vision-Language Models
ALBEF (14M)
76.04
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
BGN, ensemble
75.92
Bilinear Graph Networks for Visual Question Answering
ERNIE-ViL-single model
74.93
ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph
Single, w/o VLP
74.16
In Defense of Grid Features for Visual Question Answering
Single, w/o VLP
73.86
Deep Multimodal Neural Architecture Search
UNITER (Large)
73.4
UNITER: UNiversal Image-TExt Representation Learning
X-101 grid features + MCAN
72.71
In Defense of Grid Features for Visual Question Answering
0 of 38 row(s) selected.
Previous
Next
Visual Question Answering On Vqa V2 Test Std | SOTA | HyperAI