HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Visuelles Fragebeantworten (VQA)
Visual Question Answering On Vqa V2 Test Dev
Visual Question Answering On Vqa V2 Test Dev
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
PaLI
84.3
PaLI: A Jointly-Scaled Multilingual Language-Image Model
BEiT-3
84.19
Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks
VLMo
82.78
VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts
ONE-PEACE
82.6
ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities
mPLUG (Huge)
82.43
mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal Skip-connections
CuMo-7B
82.2
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts
X2-VLM (large)
81.9
X$^2$-VLM: All-In-One Pre-trained Model For Vision-Language Tasks
MMU
81.26
Achieving Human Parity on Visual Question Answering
Lyrics
81.2
Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects
InternVL-C
81.2
InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks
X2-VLM (base)
80.4
X$^2$-VLM: All-In-One Pre-trained Model For Vision-Language Tasks
XFM (base)
80.4
Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
VAST
80.23
-
SimVLM
80.03
SimVLM: Simple Visual Language Model Pretraining with Weak Supervision
VALOR
78.46
VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
Prismer
78.43
Prismer: A Vision-Language Model with Multi-Task Experts
X-VLM (base)
78.22
Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts
VK-OOD
77.9
Implicit Differentiable Outlier Detection Enable Robust Deep Multimodal Analysis
ALBEF (14M)
75.84
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
Oscar
73.82
Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks
0 of 56 row(s) selected.
Previous
Next
Visual Question Answering On Vqa V2 Test Dev | SOTA | HyperAI