HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Visuelles Fragebeantworten (VQA)
Visual Question Answering On A Okvqa
Visual Question Answering On A Okvqa
Metriken
DA VQA Score
MC Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
DA VQA Score
MC Accuracy
Paper Title
SMoLA-PaLI-X Specialist Model
70.55
83.75
Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts
PaLI-X-VPD
68.2
80.4
Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models
PromptCap
59.6
73.2
PromptCap: Prompt-Guided Task-Aware Image Captioning
Prophet
58.5
75.1
Prophet: Prompting Large Language Models with Complementary Answer Heuristics for Knowledge-based Visual Question Answering
A Simple Baseline for KB-VQA
57.5
-
A Simple Baseline for Knowledge-Based Visual Question Answering
KRISP
42.2
42.2
KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA
GPV-2
40.7
53.7
Webly Supervised Concept Expansion for General Purpose Vision Models
VLC-BERT
38.05
-
VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge
LXMERT
25.9
41.6
LXMERT: Learning Cross-Modality Encoder Representations from Transformers
ViLBERT
25.9
41.5
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
Pythia
21.9
40.1
Pythia v0.1: the Winning Entry to the VQA Challenge 2018
ViLBERT - VQA
12.0
42.1
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
ViLBERT - OK-VQA
9.2
34.1
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
MC-CoT
-
71
Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training
HYDRA
-
56.35
HYDRA: A Hyper Agent for Dynamic Compositional Visual Reasoning
0 of 15 row(s) selected.
Previous
Next
Visual Question Answering On A Okvqa | SOTA | HyperAI