HyperAI

Visual Prompt Tuning On Fgvc

Metriken

Mean Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
Mean Accuracy
Paper TitleRepository
VPT-Deep (ViT-B/16_MAE_pretrained_ImageNet-1K)72.02Visual Prompt Tuning
GateVPT(ViT-B/16_MAE_pretrained_ImageNet-1K)73.39Improving Visual Prompt Tuning for Self-supervised Vision Transformers
SPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K)83.26Revisiting the Power of Prompt for Visual Tuning-
VPT-Shallow (ViT-B/16_MAE_pretrained_ImageNet-1K)57.84Visual Prompt Tuning
VPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)83.12Visual Prompt Tuning
SPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)84.08Revisiting the Power of Prompt for Visual Tuning-
SPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K)73.95Revisiting the Power of Prompt for Visual Tuning-
SPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)86.00Revisiting the Power of Prompt for Visual Tuning-
GateVPT(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)83.00Improving Visual Prompt Tuning for Self-supervised Vision Transformers
VPT-Shallow (ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)79.26Visual Prompt Tuning
0 of 10 row(s) selected.