HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Visuelles Objektverfolgungssystem
Visual Object Tracking On Trackingnet
Visual Object Tracking On Trackingnet
Metriken
Accuracy
Normalized Precision
Precision
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Normalized Precision
Precision
Paper Title
Repository
ARTrack-L
85.6
89.6
86.0
Autoregressive Visual Tracking
SiamFC++
74.5
79.8
68.5
SiamFC++: Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines
-
ATOM(Resnet18)+EnergyRegression
-
80.1
69.7
Energy-Based Models for Deep Probabilistic Regression
-
NeighborTrack-OSTrack
83.79
88.30
-
NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets
-
GFS-DCF
60.9
71.79
56.57
Joint Group Feature Selection and Discriminative Filter Learning for Robust Visual Object Tracking
-
SiamBAN-ACM
75.3
81.0
71.2
Learning to Fuse Asymmetric Feature Maps in Siamese Trackers
-
ODTrack-B
85.1
-
-
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
-
DiMP-50
74.0
80.1
-
Learning Discriminative Model Prediction for Tracking
-
UNINEXT-H
85.4
89.0
86.4
Universal Instance Perception as Object Discovery and Retrieval
-
OSTrack-384
83.9
88.5
83.2
Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
-
MixFormer-L
83.9
88.9
83.1
MixFormer: End-to-End Tracking with Iterative Mixed Attention
-
MixFormerV2-B
83.4
88.1
81.6
-
-
TREG
78.5
83.8
75
Target Transformed Regression for Accurate Tracking
-
SeqTrack-L384
85.5
89.8
85.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
-
ATOM
70.34
77.11
64.84
ATOM: Accurate Tracking by Overlap Maximization
-
AiATrack
82.7
87.8
80.4
AiATrack: Attention in Attention for Transformer Visual Tracking
-
LoRAT-g-378
86.0
90.2
86.1
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
-
SLT-TransT
82.8
87.5
81.4
Towards Sequence-Level Training for Visual Tracking
-
MCITrack-B224
86.3
90.9
86.1
Exploring Enhanced Contextual Information for Video-Level Object Tracking
-
TATrack-L
85.0
89.3
84.5
Target-Aware Tracking with Long-term Context Attention
-
0 of 37 row(s) selected.
Previous
Next
Visual Object Tracking On Trackingnet | SOTA | HyperAI