HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Visual Object Tracking
Visual Object Tracking On Tnl2K
Visual Object Tracking On Tnl2K
Metriken
AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
Paper Title
Repository
MCITrack-B224
62.9
Exploring Enhanced Contextual Information for Video-Level Object Tracking
RTracker-L
60.6
RTracker: Recoverable Tracking via PN Tree Structured Memory
MixFormerV2-B
57.4
-
-
LoRAT-g-378
62.7
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
MCITrack-L384
65.3
Exploring Enhanced Contextual Information for Video-Level Object Tracking
ARTrackV2-L
61.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
SeqTrack-L384
57.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
AdaSwitcher
-
Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark
ODTrack-B
60.9
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ARTrack-L
60.3
Autoregressive Visual Tracking
ODTrack-L
61.7
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
DropTrack
56.9
DropMAE: Masked Autoencoders with Spatial-Attention Dropout for Tracking Tasks
LoRAT-L-378
62.3
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
0 of 13 row(s) selected.
Previous
Next