HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Visuelles Objektverfolgungssystem
Visual Object Tracking On Tnl2K
Visual Object Tracking On Tnl2K
Metriken
AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
Paper Title
Repository
MCITrack-B224
62.9
Exploring Enhanced Contextual Information for Video-Level Object Tracking
-
RTracker-L
60.6
RTracker: Recoverable Tracking via PN Tree Structured Memory
-
MixFormerV2-B
57.4
-
-
LoRAT-g-378
62.7
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
-
MCITrack-L384
65.3
Exploring Enhanced Contextual Information for Video-Level Object Tracking
-
ARTrackV2-L
61.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
-
SeqTrack-L384
57.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
-
AdaSwitcher
-
Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark
-
ODTrack-B
60.9
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
-
ARTrack-L
60.3
Autoregressive Visual Tracking
ODTrack-L
61.7
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
-
DropTrack
56.9
DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
-
LoRAT-L-378
62.3
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
-
0 of 13 row(s) selected.
Previous
Next