HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Video Super Resolution
Video Super Resolution On Msu Video Upscalers
Video Super Resolution On Msu Video Upscalers
Metriken
LPIPS
PSNR
SSIM
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
LPIPS
PSNR
SSIM
Paper Title
Repository
SwinIR-Real-B
0.183
28.86
0.830
SwinIR: Image Restoration Using Swin Transformer
ESRGAN
-
27.29
0.936
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
LGFN
-
27.42
0.939
Local-Global Fusion Network for Video Super-Resolution
VEAI-GCG-5
0.292
31.01
0.859
-
-
ESPCN
-
26.25
0.926
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
VEAI-ALQ-13
0.206
31.00
0.890
-
-
VEAI-ASD-2
0.218
30.55
0.868
-
-
VEAI-GHQ-5
0.210
30.55
0.869
-
-
RealEsrgan-F
0.185
28.82
0.850
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
Davinci SupScl
0.369
30.10
0.854
-
-
GP-Lines
0.212
29.01
0.822
-
-
DBVSR
-
27.28
0.937
Deep Blind Video Super-resolution
VEAI-AD-2
0.195
31.15
0.898
-
-
BasicVsr++RD
0.334
30.98
0.881
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
iSeeBetter
-
27.42
0.939
iSeeBetter: Spatio-Temporal Video Super Resolution using Recurrent-Generative Back-Projection Networks
VEAI-AAM-10
0.278
30.76
0.838
-
-
BSRGAN
0.177
29.27
0.836
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution
SRMD
0.349
30.96
0.852
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
SwinIR-Real-S
0.189
28.55
0.845
SwinIR: Image Restoration Using Swin Transformer
RealEsrgan
0.181
29.14
0.855
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
0 of 48 row(s) selected.
Previous
Next