HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Video-Fragebeantwortung
Video Question Answering On Situated
Video Question Answering On Situated
Metriken
Average Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average Accuracy
Paper Title
VLAP (4 frames)
67.1
ViLA: Efficient Video-Language Alignment for Video Question Answering
LLaMA-VQA
65.4
Large Language Models are Temporal and Causal Reasoners for Video Question Answering
SeViLA
64.9
Self-Chained Image-Language Model for Video Localization and Question Answering
InternVideo
58.7
InternVideo: General Video Foundation Models via Generative and Discriminative Learning
GF(sup)
53.94
Glance and Focus: Memory Prompting for Multi-Event Video Question Answering
GF(uns)
53.86
Glance and Focus: Memory Prompting for Multi-Event Video Question Answering
MIST
51.13
MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form Video Question Answering
Temp[ATP]
48.37
Revisiting the "Video" in Video-Language Understanding
AnyMAL-70B (0-shot)
48.2
AnyMAL: An Efficient and Scalable Any-Modality Augmented Language Model
All-in-one
47.5
All in One: Exploring Unified Video-Language Pre-training
TraveLER (0-shot)
44.9
TraveLER: A Modular Multi-LMM Agent Framework for Video Question-Answering
SeViLA (0-shot)
44.6
Self-Chained Image-Language Model for Video Localization and Question Answering
Flamingo-9B (4-shot)
42.8
Flamingo: a Visual Language Model for Few-Shot Learning
Flamingo-80B (4-shot)
42.4
Flamingo: a Visual Language Model for Few-Shot Learning
Flamingo-9B (0-shot)
41.8
Flamingo: a Visual Language Model for Few-Shot Learning
Flamingo-80B (0-shot)
39.7
Flamingo: a Visual Language Model for Few-Shot Learning
SHG-VQA (trained from scratch)
39.47
Learning Situation Hyper-Graphs for Video Question Answering
0 of 17 row(s) selected.
Previous
Next
Video Question Answering On Situated | SOTA | HyperAI