Unsupervised Image Classification On Stl 10
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Accuracy |
---|---|
Modell 1 | 90.8 |
learning-to-classify-images-without-labels | 80.90 |
invariant-information-distillation-for | 61.00 |
mv-mr-multi-views-and-multi-representations | 89.67 |
ipcl-iterative-pseudo-supervised-contrastive | - |
scatsimclr-self-supervised-contrastive | 85.11 |
mitigating-embedding-and-class-assignment | 66.50 |
let-go-of-your-labels-with-unsupervised-1 | 99.7 |
improving-unsupervised-image-clustering-with | 86.7 |