HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Unüberwachte Domänenanpassung
Unsupervised Domain Adaptation On Imagenet C
Unsupervised Domain Adaptation On Imagenet C
Metriken
mean Corruption Error (mCE)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mean Corruption Error (mCE)
Paper Title
Repository
ResNeXt101 32x8d + DeepAug + Augmix + RPL
34.8
If your data distribution shifts, use self-learning
-
EfficientNet-L2+ENT
23.0
If your data distribution shifts, use self-learning
-
ResNeXt101 32x8d + IG-3.5B + RPL
40.9
If your data distribution shifts, use self-learning
-
ResNet50 + RPL
50.5
If your data distribution shifts, use self-learning
-
ResNeXt101 32x8d + RPL
43.2
If your data distribution shifts, use self-learning
-
ResNet50 + ENT
51.6
If your data distribution shifts, use self-learning
-
ResNeXt101 32x8d + ENT
44.3
If your data distribution shifts, use self-learning
-
ResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
38.0
Improving robustness against common corruptions by covariate shift adaptation
-
ResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
40.7
Improving robustness against common corruptions by covariate shift adaptation
-
ResNeXt101 32x8d + DeepAug + Augmix + ENT
35.5
If your data distribution shifts, use self-learning
-
ResNet50+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
48.4
Improving robustness against common corruptions by covariate shift adaptation
-
ResNet50 (baseline), BatchNorm Adaptation, 8 samples
65.0
Improving robustness against common corruptions by covariate shift adaptation
-
ResNet50 (baseline), BatchNorm Adaptation, full adaptation
62.2
Improving robustness against common corruptions by covariate shift adaptation
-
ResNet50+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
45.4
Improving robustness against common corruptions by covariate shift adaptation
-
ResNeXt101 32x8d + IG-3.5B + ENT
40.8
If your data distribution shifts, use self-learning
-
EfficientNet-L2+RPL
22.0
If your data distribution shifts, use self-learning
-
0 of 16 row(s) selected.
Previous
Next
Unsupervised Domain Adaptation On Imagenet C | SOTA | HyperAI