HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Traffic Prediction
Traffic Prediction On Pemsd8
Traffic Prediction On Pemsd8
Metriken
12 steps MAE
12 steps RMSE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
12 steps MAE
12 steps RMSE
Paper Title
Repository
Hierarchical-Attention-LSTM (HierAttnLSTM)
9.215
22.320
Network Level Spatial Temporal Traffic State Forecasting with Hierarchical Attention LSTM (HierAttnLSTM)
PM-DMNet(P)
13.55
23.35
Pattern-Matching Dynamic Memory Network for Dual-Mode Traffic Prediction
STD-MAE
13.44
22.47
Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
PDG2Seq
13.60
23.37
PDG2Seq: Periodic Dynamic Graph to Sequence Model for Traffic Flow Prediction
STG-NRDE
15.32
24.72
Graph Neural Rough Differential Equations for Traffic Forecasting
FasterSTS
13.60
-
FasterSTS: A Faster Spatio-Temporal Synchronous Graph Convolutional Networks for Traffic flow Forecasting
-
STWave
13.42
-
When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks
DDGCRN
14.40
-
A Decomposition Dynamic graph convolutional recurrent network for traffic forecasting
HTVGNN
13.24
-
A novel hybrid time-varying graph neural network for traffic flow forecasting
-
HAGCN
14.85
-
HAGCN : Network Decentralization Attention Based Heterogeneity-Aware Spatiotemporal Graph Convolution Network for Traffic Signal Forecasting
-
STG-NCDE
15.45
24.81
Graph Neural Controlled Differential Equations for Traffic Forecasting
PM-DMNet(R)
13.40
23.22
Pattern-Matching Dynamic Memory Network for Dual-Mode Traffic Prediction
PDFormer
13.58
-
PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction
0 of 13 row(s) selected.
Previous
Next