HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Traffic Prediction
Traffic Prediction On Pems04
Traffic Prediction On Pems04
Metriken
12 Steps MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
12 Steps MAE
Paper Title
Repository
IDCN
19.33
-
-
PDG2Seq
18.24
PDG2Seq: Periodic Dynamic Graph to Sequence Model for Traffic Flow Prediction
STAEformer
18.22
STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting
Cy2Mixer
18.14
Enhancing Topological Dependencies in Spatio-Temporal Graphs with Cycle Message Passing Blocks
STD-MAE
17.80
Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
DDGCRN
18.45
A Decomposition Dynamic graph convolutional recurrent network for traffic forecasting
HTVGNN
17.99
A novel hybrid time-varying graph neural network for traffic flow forecasting
-
FasterSTS
18.49
FasterSTS: A Faster Spatio-Temporal Synchronous Graph Convolutional Networks for Traffic flow Forecasting
-
PDFormer
18.32
PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction
LightCTS
-
LightCTS: A Lightweight Framework for Correlated Time Series Forecasting
DTRformer
18
Dynamic Trend Fusion Module for Traffic Flow Prediction
AGCRN
19.83
Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting
0 of 12 row(s) selected.
Previous
Next