HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Traffic Prediction
Traffic Prediction On Pems Bay
Traffic Prediction On Pems Bay
Metriken
MAE @ 12 step
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
MAE @ 12 step
Paper Title
Repository
STAWnet
1.89
Spatial‐temporal attention wavenet: A deep learning framework for traffic prediction considering spatial‐temporal dependencies
STAEformer
1.91
STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting
STBayesian
-
Traffic signal prediction on transportation networks using spatio-temporal correlations on graphs
STD-MAE
1.77
Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
MegaCRN
1.88
Spatio-Temporal Meta-Graph Learning for Traffic Forecasting
Graph Wave-Net
1.95
Graph WaveNet for Deep Spatial-Temporal Graph Modeling
RGDAN
1.86
RGDAN: A random graph diffusion attention network for traffic prediction
SLCNN
2.03
Spatio-Temporal Graph Structure Learning for Traffic Forecasting
-
GWNET-Cov
1.91
Conditional Temporal Neural Processes with Covariance Loss
-
STGM
1.857
Spatio-Temporal Graph Mixformer for Traffic Forecasting
GMAN
1.92
GMAN: A Graph Multi-Attention Network for Traffic Prediction
STEP
1.79
Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting
D2STGNN
1.85
Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
T-Graphormer
1.63
T-Graphormer: Using Transformers for Spatiotemporal Forecasting
DCRNN
2.07
Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting
TITAN
1.69
A Time Series is Worth Five Experts: Heterogeneous Mixture of Experts for Traffic Flow Prediction
0 of 16 row(s) selected.
Previous
Next