HyperAI

Spoken Language Understanding On Fluent

Metriken

Accuracy (%)

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAccuracy (%)
finstreder-simple-and-fast-spoken-language99.7
finstreder-simple-and-fast-spoken-language99.8
finstreder-simple-and-fast-spoken-language99.5
integration-of-pre-trained-networks-with99.7
do-we-still-need-automatic-speech-recognition99.6
sequential-end-to-end-intent-and-slot-label99.3
two-stage-textual-knowledge-distillation-to99.7
universlu-universal-spoken-language99.8
finstreder-simple-and-fast-spoken-language98.7
finstreder-simple-and-fast-spoken-language99.2
speech-language-pre-training-for-end-to-end99.7
improving-end-to-end-speech-to-intent99.2
speech-model-pre-training-for-end-to-end98.8
fans-fusing-asr-and-nlu-for-on-device-slu99.0
speechprompt-v2-prompt-tuning-for-speech98.2
end-to-end-spoken-language-understanding-for99.4
exploring-transfer-learning-for-end-to-end99.5