HyperAI

Speech Recognition On Switchboard Hub500

Metriken

Percentage error

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnamePercentage error
Modell 111
Modell 212.9
Modell 312.9
the-ibm-2015-english-conversational-telephone8.0
the-microsoft-2016-conversational-speech6.2
Modell 611.5
Modell 718.5
the-ibm-2016-english-conversational-telephone6.6
building-dnn-acoustic-models-for-large16
Modell 1012.9
Modell 1110.4
deep-speech-scaling-up-end-to-end-speech12.6
single-headed-attention-based-sequence-to4.7
building-dnn-acoustic-models-for-large15
achieving-human-parity-in-conversational6.6
the-microsoft-2016-conversational-speech6.3
on-the-limit-of-english-conversational-speech4.3
english-conversational-telephone-speech5.5
Modell 1912.6
the-microsoft-2016-conversational-speech6.9
Modell 218.5
deep-speech-scaling-up-end-to-end-speech12.6
Modell 239.2
the-ibm-2016-english-conversational-telephone6.9
Modell 2512.9
Modell 2616.1
deep-speech-scaling-up-end-to-end-speech20
achieving-human-parity-in-conversational5.8
Modell 2912.6
very-deep-multilingual-convolutional-neural12.2