HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Sprachverbesserung
Speech Enhancement On Demand
Speech Enhancement On Demand
Metriken
PESQ (wb)
Para. (M)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
PESQ (wb)
Para. (M)
Paper Title
PESQetarian
3.82
30
The PESQetarian: On the Relevance of Goodhart's Law for Speech Enhancement
Mamba-SEUNet L (+PCS)
3.73
6.28
Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement
Schrödinger bridge (PESQ loss)
3.70
-
Investigating Training Objectives for Generative Speech Enhancement
SEMamba (+PCS)
3.69
2.25
An Investigation of Incorporating Mamba for Speech Enhancement
ZipEnhancer (S, lamba_6 = 0)
3.63
2.04
-
ZipEnhancer (S, lamba_6 = 0.2)
3.61
2.04
-
PrimeK-Net
3.61
1.41
PrimeK-Net: Multi-scale Spectral Learning via Group Prime-Kernel Convolutional Neural Networks for Single Channel Speech Enhancement
MP-SENet
3.60
2.26
Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement
PCS_CS_WAVLM
3.54
-
-
xLSTM-SENet2
3.53
2.27
xLSTM-SENet: xLSTM for Single-Channel Speech Enhancement
SCP-CMGAN
3.52
-
SCP-GAN: Self-Correcting Discriminator Optimization for Training Consistency Preserving Metric GAN on Speech Enhancement Tasks
D2Former
3.43
0.86
Monaural Speech Enhancement with Complex Convolutional Block Attention Module and Joint Time Frequency Losses
CMGAN
3.41
-
CMGAN: Conformer-Based Metric-GAN for Monaural Speech Enhancement
PCS
3.35
-
Perceptual Contrast Stretching on Target Feature for Speech Enhancement
aTENNuate
3.27
-
aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on Raw Audio
D²Net
3.27
-
D²Net: A Denoising and Dereverberation Network Based on Two-branch Encoder and Dual-path Transformer
Centaurus (0.51M)
3.25
-
Let SSMs be ConvNets: State-space Modeling with Optimal Tensor Contractions
MetricGAN-OKD
3.24
1.89
MetricGAN-OKD: Multi-Metric Optimization of MetricGAN via Online Knowledge Distillation for Speech Enhancement
MANNER
3.21
-
MANNER: Multi-view Attention Network for Noise Erasure
BSSE-SE
3.20
-
Boosting Self-Supervised Embeddings for Speech Enhancement
0 of 40 row(s) selected.
Previous
Next
Speech Enhancement On Demand | SOTA | HyperAI