HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Speech Enhancement
Speech Enhancement On Demand
Speech Enhancement On Demand
Metriken
PESQ (wb)
Para. (M)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
PESQ (wb)
Para. (M)
Paper Title
Repository
D2Former
3.43
0.86
Monaural Speech Enhancement with Complex Convolutional Block Attention Module and Joint Time Frequency Losses
DeepFilterNet3
3.17
-
DeepFilterNet: Perceptually Motivated Real-Time Speech Enhancement
Centaurus (0.51M)
3.25
-
Let SSMs be ConvNets: State-space Modeling with Optimal Tensor Contractions
-
PCS
3.35
-
Perceptual Contrast Stretching on Target Feature for Speech Enhancement
MetricGAN-OKD
3.24
1.89
MetricGAN-OKD: Multi-Metric Optimization of MetricGAN via Online Knowledge Distillation for Speech Enhancement
SGMSE+
3.11
-
An Analysis of the Variance of Diffusion-based Speech Enhancement
-
RDL-Net 1.87M (Deep Xi - MMSE-LSA)
2.93
-
Deep Residual-Dense Lattice Network for Speech Enhancement
PESQetarian
3.82
30
The PESQetarian: On the Relevance of Goodhart's Law for Speech Enhancement
-
ZipEnhancer (S, lamba_6 = 0.2)
3.61
2.04
-
-
MANNER
3.21
-
MANNER: Multi-view Attention Network for Noise Erasure
Dense-TSNet
3.05
0.014
Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement
-
SEMamba (+PCS)
3.69
2.25
An Investigation of Incorporating Mamba for Speech Enhancement
ROSE
3.01
36.98
ROSE: A Recognition-Oriented Speech Enhancement Framework in Air Traffic Control Using Multi-Objective Learning
xLSTM-SENet2
3.53
2.27
xLSTM-SENet: xLSTM for Single-Channel Speech Enhancement
SCP-CMGAN
3.52
-
SCP-GAN: Self-Correcting Discriminator Optimization for Training Consistency Preserving Metric GAN on Speech Enhancement Tasks
-
aTENNuate
3.27
-
Real-time Speech Enhancement on Raw Signals with Deep State-space Modeling
-
SGMSE+ (Diffusion Model)
2.93
-
Speech Enhancement and Dereverberation with Diffusion-based Generative Models
real-time-GRU
2.82
-
A Modulation-Domain Loss for Neural-Network-based Real-time Speech Enhancement
ZipEnhancer (S, lamba_6 = 0)
3.63
2.04
-
-
MANNER-S + MV-AT (8.1GF)
3.12
1.38
Multi-View Attention Transfer for Efficient Speech Enhancement
-
0 of 40 row(s) selected.
Previous
Next