HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Quellenfreie Domänenanpassung
Source Free Domain Adaptation On Visda 2017
Source Free Domain Adaptation On Visda 2017
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
SFDA2++
89.6
SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
-
RCL
93.2
Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
-
NRC
85.9
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation
-
G-SFDA
85.4
Generalized Source-free Domain Adaptation
-
SHOT++
87.3
Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
-
SHOT
82.9
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
-
SFDA2
88.1
SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
-
DaC
87.3
Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
-
C-SFDA
87.8
C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
-
0 of 9 row(s) selected.
Previous
Next
Source Free Domain Adaptation On Visda 2017 | SOTA | HyperAI