HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Smac 1
Smac On Smac Def Infantry Parallel
Smac On Smac Def Infantry Parallel
Metriken
Median Win Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Median Win Rate
Paper Title
Repository
DIQL
45.0
DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation
DMIX
90.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
40.0
The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
COMA
50.0
Counterfactual Multi-Agent Policy Gradients
DDN
20.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QTRAN
100.0
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
DRIMA
100.0
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
QMIX
95.0
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
MASAC
30.0
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
VDN
95.0
Value-Decomposition Networks For Cooperative Multi-Agent Learning
0 of 10 row(s) selected.
Previous
Next