HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Slot-Füllung
Slot Filling On Mixsnips
Slot Filling On Mixsnips
Metriken
Micro F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Micro F1
Paper Title
BiSLU
97.2
Joint Multiple Intent Detection and Slot Filling with Supervised Contrastive Learning and Self-Distillation
SLIM (PACL)
96.8
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
SLIM
96.5
SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling
Uni-MIS
96.4
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
TFMN
96.4
A Transformer-based Threshold-Free Framework for Multi-Intent NLU
TFMN (PACL)
96.3
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
RoBERTa (PACL)
96.2
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
DGIF
95.9
A Dynamic Graph Interactive Framework with Label-Semantic Injection for Spoken Language Understanding
SSRAN
95.8
A Scope Sensitive and Result Attentive Model for Multi-Intent Spoken Language Understanding
MISCA
95.2
MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
Co-guiding Net
95.1
Co-guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs
UGEN
95.0
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
Global Intent-Slot Co-occurence
95.0
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
GL-GIN
94.9
GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
AGIF
94.5
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
Topic Information
94.4
Exploiting Topic Information for Joint Intent Detection and Slot Filling
0 of 16 row(s) selected.
Previous
Next