Sleep Apnea Detection On Apnea Ecg
Metriken
AUC Per-segment
Accuracy Per-patient
Accuracy Per-segment
F1 Per-patient
F1 Per-segment
Sensitivity Per-patient
Sensitivity Per-segment
Specificity Per-patient
Specificity Per-segment
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Modellname | AUC Per-segment | Accuracy Per-patient | Accuracy Per-segment | F1 Per-patient | F1 Per-segment | Sensitivity Per-patient | Sensitivity Per-segment | Specificity Per-patient | Specificity Per-segment | Paper Title | Repository |
---|---|---|---|---|---|---|---|---|---|---|---|
AIOSA CNN+LSTM | 0.981 | 1.0 | 0.936 | 1.0 | 0.916 | 1.0 | 0.912 | 1.0 | 0.951 | AIOSA: An approach to the automatic identification of obstructive sleep apnea events based on deep learning |
0 of 1 row(s) selected.