HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Satzrepräsentationen für biomedizinische Texte
Sentence Embeddings For Biomedical Texts On
Sentence Embeddings For Biomedical Texts On
Metriken
Pearson Correlation
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Pearson Correlation
Paper Title
Supervised combination of: Jaccard, Q-gram, sent2vec, Paragraph vector DM, skip-thoughts, fastText
0.871
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
Unsupervised combination (mean) of: Jaccard, q-gram, Paragraph vector (PV-DBOW) and sent2vec
0.846
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
Paragraph vector (PV-DM)
0.819
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
BioSentVec (PubMed)
0.817
BioSentVec: creating sentence embeddings for biomedical texts
Paragraph vector (PV-DBOW)
0.804
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
Sent2vec
0.798
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
BioSentVec (PubMed + MIMIC-III)
0.795
BioSentVec: creating sentence embeddings for biomedical texts
Paragraph Vector
0.787
BIOSSES: A Semantic Sentence Similarity Estimation System for the Biomedical Domain
fastText (skip-gram, max pooling)
0.766
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
Q-gram (q = 3)
0.723
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
Skip-thoughts
0.485
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
BioSentVec (MIMIC-III)
0.350
BioSentVec: creating sentence embeddings for biomedical texts
Universal Sentence Encoder
0.345
BioSentVec: creating sentence embeddings for biomedical texts
fastText (CBOW, max pooling)
0.253
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
0 of 14 row(s) selected.
Previous
Next