Sentence Classification On Scicite
Metriken
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
| Paper Title | ||
|---|---|---|
| SciBERT | 84.9 | SciBERT: A Pretrained Language Model for Scientific Text |
| Structural-scaffolds | 84 | Structural Scaffolds for Citation Intent Classification in Scientific Publications |
| BiLSTM-Attention + ELMo | 82.6 | - |
| Feature-Rich Random Forest | 79.6 | - |
| BiLSTM-Attention | 77.2 | - |
0 of 5 row(s) selected.