HyperAI

Semi Supervised Semantic Segmentation On 1

Metriken

Validation mIoU

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameValidation mIoU
a-simple-baseline-for-semi-supervised77.8%
semi-supervised-semantic-segmentation-using-278.51%
semi-supervised-semantic-segmentation-via-379.52%
bootstrapping-semantic-segmentation-with68.50%
semi-supervised-semantic-segmentation-with-379.21%
unimatch-v2-pushing-the-limit-of-semi84.5%
perturbed-and-strict-mean-teachers-for-semi78.38%
revisiting-and-maximizing-temporal-knowledge78.8%
lasermix-for-semi-supervised-lidar-semantic78.3%
semi-supervised-semantic-segmentation-with-573.52%
guidedmix-net-learning-to-improve-pseudo67.5%
semivl-semi-supervised-semantic-segmentation80.3%
adversarial-learning-for-semi-supervised60.5%
confidence-weighted-boundary-aware-learning78.43%
switching-temporary-teachers-for-semi79.46
the-gist-and-rist-of-iterative-self-training65.14%
bootstrapping-semantic-segmentation-with67.53%
three-ways-to-improve-semantic-segmentation69.38%
corrmatch-label-propagation-via-correlation79.4%
consistency-regularization-and-cutmix-for63.87%
semi-supervised-semantic-segmentation-with-678.4%
semi-supervised-semantic-segmentation-with-265.9%
classmix-segmentation-based-data-augmentation63.63%
semi-supervised-semantic-segmentation-with61.9%
semi-supervised-semantic-segmentation-via-279.01%
conservative-progressive-collaborative76.98%
n-cps-generalising-cross-pseudo-supervision78.41%
revisiting-and-maximizing-temporal-knowledge80.1%
revisiting-weak-to-strong-consistency-in-semi79.22%