HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Vaihingen
Semantic Segmentation On Vaihingen
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
Repository
CMX
82.87
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
SegFormer-B0
75.57
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
SA-Gate
81.03
Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation
HRNet-48
76.75
Deep High-Resolution Representation Learning for Visual Recognition
SegFormer-B2
76.69
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
UnetFormer
77.24
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
PSPNet
76.79
Pyramid Scene Parsing Network
LMFNet-2 (
82.49
LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing
-
V-FuseNet
79.56
Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks
SegFormer-B1
76.92
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
DeepLabV3+
72.90
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
HRNet-18
75.90
Deep High-Resolution Representation Learning for Visual Recognition
FPN
74.86
Feature Pyramid Networks for Object Detection
0 of 13 row(s) selected.
Previous
Next
Semantic Segmentation On Vaihingen | SOTA | HyperAI