HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Toronto 3D L002
Semantic Segmentation On Toronto 3D L002
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
EyeNet
81.13
Human Vision Based 3D Point Cloud Semantic Segmentation of Large-Scale Outdoor Scene
RandLA-Net
74.3
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
CLOUDSPAM
71.8
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
DA-supervised
69.3
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
PointNet++
56.5
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
0 of 5 row(s) selected.
Previous
Next
Semantic Segmentation On Toronto 3D L002 | SOTA | HyperAI