HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Pascal Voc 2012 Val
Semantic Segmentation On Pascal Voc 2012 Val
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
Repository
DeepLabv3-JFT
82.7%
Rethinking Atrous Convolution for Semantic Image Segmentation
-
RRM
66.3
Reliability Does Matter: An End-to-End Weakly Supervised Semantic Segmentation Approach
-
FastDenseNas-arch1
77.1%
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
-
SID
-
Simple Does It: Weakly Supervised Instance and Semantic Segmentation
-
SpineNet-S143 (single-scale test)
85.64%
Dilated SpineNet for Semantic Segmentation
-
FastDenseNas-arch2
77.3%
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
-
PRM
53.4%
Weakly Supervised Instance Segmentation using Class Peak Response
-
Auto-DeepLab-L
82.04%
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
-
HyperSeg-L
80.61%
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
-
SSDD
64.9
Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation
-
PSA w/ EADER DeepLab (Xception-65)
62.8%
Find it if You Can: End-to-End Adversarial Erasing for Weakly-Supervised Semantic Segmentation
-
FastDenseNas-arch0
78.0%
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
-
ReLICv2
77.9%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
-
Eff-B7 NAS-FPN (Copy-Paste pre-training, single-scale))
86.6%
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
-
BYOL
75.7%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
-
SIW
65%
Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings
-
G2
55.7%
Exploiting saliency for object segmentation from image level labels
-
DetCon
77.3%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
-
DeepLabv3 (ImageNet+300M)
76.5%
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
-
TADP
87.11%
Text-image Alignment for Diffusion-based Perception
-
0 of 29 row(s) selected.
Previous
Next