HyperAI

Semantic Segmentation On Pascal Voc 2012

Metriken

Mean IoU

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameMean IoU
fully-convolutional-networks-for-semantic-162.2%
efficient-yet-deep-convolutional-neural69%
light-weight-refinenet-for-real-time-semantic81.1%
light-weight-refinenet-for-real-time-semantic82.0%
encoder-decoder-with-atrous-separable89.0%
learning-a-discriminative-feature-network-for86.2%
squeeze-and-attention-networks-for-semantic86.1%
espnet-efficient-spatial-pyramid-of-dilated63.01%
understanding-convolution-for-semantic83.1%
pyramid-scene-parsing-network85.4%
parsenet-looking-wider-to-see-better69.8%
exploiting-saliency-for-object-segmentation56.7%
fast-exact-and-multi-scale-inference-for80.2%
waterfall-atrous-spatial-pooling-architecture79.6%
context-encoding-for-semantic-segmentation82.9%
self-supervised-difference-detection-for-165.5
multi-scale-context-aggregation-by-dilated67.6%
stacked-deconvolutional-network-for-semantic86.6%
espnetv2-a-light-weight-power-efficient-and68.0%
the-lovasz-softmax-loss-a-tractable-surrogate79.00%
reliability-does-matter-an-end-to-end-weakly66.5
is-attention-better-than-matrix-decomposition-185.9%
object-contextual-representations-for84.3%
context-encoding-for-semantic-segmentation85.9%
auto-deeplab-hierarchical-neural-architecture85.6%
dual-attention-network-for-scene-segmentation82.6%
beyond-self-attention-external-attention84%
refinenet-multi-path-refinement-networks-for84.2%
simple-does-it-weakly-supervised-instance-and72.8%
semantic-image-segmentation-with-deep71.6%
object-contextual-representations-for84.5%
large-kernel-matters-improve-semantic83.6%
dicenet-dimension-wise-convolutions-for67.31%
light-weight-refinenet-for-real-time-semantic79.2%
triply-supervised-decoder-networks-for-joint83.3%
the-lovasz-softmax-loss-a-tractable-surrogate79.0%
multi-path-segmentation-network84.2%
encoder-decoder-with-atrous-separable89.0%
conditional-random-fields-as-recurrent-neural-174.7%
boxsup-exploiting-bounding-boxes-to-supervise64.6%
find-it-if-you-can-end-to-end-adversarial63.8%
simultaneous-detection-and-segmentation51.6%
learning-a-discriminative-feature-network-for82.7%
wider-or-deeper-revisiting-the-resnet-model84.9%
not-all-pixels-are-equal-difficulty-aware82.7%
deeplab-semantic-image-segmentation-with-deep79.7%
pyramid-scene-parsing-network82.6%
edgenext-efficiently-amalgamated-cnn80.2%
light-weight-refinenet-for-real-time-semantic82.7%
squeeze-and-attention-networks-for-semantic83.2%
rethinking-atrous-convolution-for-semantic86.9%