Semantic Segmentation On Pascal Voc 2012
Metriken
Mean IoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Mean IoU |
---|---|
fully-convolutional-networks-for-semantic-1 | 62.2% |
efficient-yet-deep-convolutional-neural | 69% |
light-weight-refinenet-for-real-time-semantic | 81.1% |
light-weight-refinenet-for-real-time-semantic | 82.0% |
encoder-decoder-with-atrous-separable | 89.0% |
learning-a-discriminative-feature-network-for | 86.2% |
squeeze-and-attention-networks-for-semantic | 86.1% |
espnet-efficient-spatial-pyramid-of-dilated | 63.01% |
understanding-convolution-for-semantic | 83.1% |
pyramid-scene-parsing-network | 85.4% |
parsenet-looking-wider-to-see-better | 69.8% |
exploiting-saliency-for-object-segmentation | 56.7% |
fast-exact-and-multi-scale-inference-for | 80.2% |
waterfall-atrous-spatial-pooling-architecture | 79.6% |
context-encoding-for-semantic-segmentation | 82.9% |
self-supervised-difference-detection-for-1 | 65.5 |
multi-scale-context-aggregation-by-dilated | 67.6% |
stacked-deconvolutional-network-for-semantic | 86.6% |
espnetv2-a-light-weight-power-efficient-and | 68.0% |
the-lovasz-softmax-loss-a-tractable-surrogate | 79.00% |
reliability-does-matter-an-end-to-end-weakly | 66.5 |
is-attention-better-than-matrix-decomposition-1 | 85.9% |
object-contextual-representations-for | 84.3% |
context-encoding-for-semantic-segmentation | 85.9% |
auto-deeplab-hierarchical-neural-architecture | 85.6% |
dual-attention-network-for-scene-segmentation | 82.6% |
beyond-self-attention-external-attention | 84% |
refinenet-multi-path-refinement-networks-for | 84.2% |
simple-does-it-weakly-supervised-instance-and | 72.8% |
semantic-image-segmentation-with-deep | 71.6% |
object-contextual-representations-for | 84.5% |
large-kernel-matters-improve-semantic | 83.6% |
dicenet-dimension-wise-convolutions-for | 67.31% |
light-weight-refinenet-for-real-time-semantic | 79.2% |
triply-supervised-decoder-networks-for-joint | 83.3% |
the-lovasz-softmax-loss-a-tractable-surrogate | 79.0% |
multi-path-segmentation-network | 84.2% |
encoder-decoder-with-atrous-separable | 89.0% |
conditional-random-fields-as-recurrent-neural-1 | 74.7% |
boxsup-exploiting-bounding-boxes-to-supervise | 64.6% |
find-it-if-you-can-end-to-end-adversarial | 63.8% |
simultaneous-detection-and-segmentation | 51.6% |
learning-a-discriminative-feature-network-for | 82.7% |
wider-or-deeper-revisiting-the-resnet-model | 84.9% |
not-all-pixels-are-equal-difficulty-aware | 82.7% |
deeplab-semantic-image-segmentation-with-deep | 79.7% |
pyramid-scene-parsing-network | 82.6% |
edgenext-efficiently-amalgamated-cnn | 80.2% |
light-weight-refinenet-for-real-time-semantic | 82.7% |
squeeze-and-attention-networks-for-semantic | 83.2% |
rethinking-atrous-convolution-for-semantic | 86.9% |