Semantic Segmentation On Pascal Context
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | mIoU |
---|---|
context-encoding-for-semantic-segmentation | 51.7 |
190807919 | 54 |
condnet-conditional-classifier-for-scene | 57 |
vision-transformer-adapter-for-dense | 68.2 |
segvit-semantic-segmentation-with-plain | 65.3 |
resnest-split-attention-networks | 58.4 |
object-contextual-representations-for | 56.2 |
dual-graph-convolutional-network-for-semantic | 53.7 |
caa-channelized-axial-attention-for-semantic | 60.5 |
location-aware-upsampling-for-semantic | 53.9 |
minimalist-and-high-performance-semantic | 71.0 |
car-class-aware-regularizations-for-semantic-1 | 64.1 |
convolutional-feature-masking-for-joint | 34.4 |
deeplab-semantic-image-segmentation-with-deep | 45.7 |
internimage-exploring-large-scale-vision | 70.3 |
efficient-yet-deep-convolutional-neural | 42.6 |
object-contextual-representations-for | 59.6 |
asymmetric-non-local-neural-networks-for | 52.8 |
efficient-self-ensemble-framework-for-1 | 56.6 |
bridging-category-level-and-instance-level | 44.5 |
conditional-random-fields-as-recurrent-neural-1 | 39.3 |
efficient-self-ensemble-framework-for-1 | 64.0 |
the-devil-is-in-the-labels-semantic | 54.2 |
generalized-parametric-contrastive-learning | 56.2 |
co-occurrent-features-in-semantic | 54.0 |
segclip-patch-aggregation-with-learnable | 24.7 |
scene-parsing-via-integrated-classification | 52.60 |
sequential-ensembling-for-semantic | 62.1 |
rethinking-decoders-for-transformer-based | 57.9 |
region-based-semantic-segmentation-with-end | 32.5 |
boxsup-exploiting-bounding-boxes-to-supervise | 40.5 |
context-prior-for-scene-segmentation | 53.9 |
rethinking-decoders-for-transformer-based | 58.6 |
is-attention-better-than-matrix-decomposition-1 | 55.2 |
fastfcn-rethinking-dilated-convolution-in-the | 53.1 |
dual-attention-network-for-scene-segmentation | 52.6 |
caa-channelized-axial-attention-for-semantic | 60.1 |
vision-transformer-adapter-for-dense | 67.5 |
fully-convolutional-networks-for-semantic-1 | 37.8 |
object-contextual-representations-for | 54.8 |
scene-segmentation-with-dual-relation-aware | 55.4% |
expectation-maximization-attention-networks | 53.1 |
caa-channelized-axial-attention-for-semantic | 55.0 |
pyramid-scene-parsing-network | 47.8 |
resnest-split-attention-networks | 58.9 |
boundary-aware-feature-propagation-for-scene | 53.6 |
condnet-conditional-classifier-for-scene | 56.0 |
representation-separation-for-semantic | 68.9 |
vision-transformers-for-dense-prediction | 60.46 |
parsenet-looking-wider-to-see-better | 40.4 |
representation-separation-for-semantic | 67.5 |
higher-order-conditional-random-fields-in | 41.3 |
dcnas-densely-connected-neural-architecture | 55.6 |
co-occurrent-features-in-semantic | 51.5 |
wider-or-deeper-revisiting-the-resnet-model | 48.1 |
refinenet-multi-path-refinement-networks-for | 47.3 |
segmenter-transformer-for-semantic | 59.0 |
efficient-piecewise-training-of-deep | 43.3 |
cassod-net-cascaded-and-separable-structures | 52.76 |
rethinking-semantic-segmentation-from-a | 55.83 |
decoders-matter-for-semantic-segmentation | 52.5 |
disentangled-non-local-neural-networks | 55.3 |
semantic-correlation-promoted-shape-variant-1 | 53.2 |
vpnext-rethinking-dense-decoding-for-plain | 71.1 |
resnest-split-attention-networks | 56.5 |
190807919 | 54.0 |