HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Nyu Depth V2
Semantic Segmentation On Nyu Depth V2
Metriken
Mean IoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Mean IoU
Paper Title
OmniVec2
63.6
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning
DiffusionMMS (DAT++-S)
61.5
Diffusion-based RGB-D Semantic Segmentation with Deformable Attention Transformer
GeminiFusion (Swin-Large)
60.9
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
OmniVec
60.8
OmniVec: Learning robust representations with cross modal sharing
GeminiFusion (Swin-Large)
60.2
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
DPLNet
59.3
Efficient Multimodal Semantic Segmentation via Dual-Prompt Learning
EMSANet (2x ResNet-34 NBt1D, PanopticNDT version, finetuned)
59.02
PanopticNDT: Efficient and Robust Panoptic Mapping
SwinMTL
58.14%
SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images
PolyMaX(ConvNeXt-L)
58.08%
PolyMaX: General Dense Prediction with Mask Transformer
HSPFormer(PVT v2-B4)
57.8%
HSPFormer: Hierarchical Spatial Perception Transformer for Semantic Segmentation
GeminiFusion (MiT-B5)
57.7
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
DFormer-L
57.2%
DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation
CMNeXt (B4)
56.9%
Delivering Arbitrary-Modal Semantic Segmentation
CMX (B5)
56.9%
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
GeminiFusion (MiT-B3)
56.8
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
OMNIVORE (Swin-L, finetuned)
56.8%
Omnivore: A Single Model for Many Visual Modalities
CMX (B4)
56.3%
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
MultiMAE (ViT-B)
56.0%
MultiMAE: Multi-modal Multi-task Masked Autoencoders
SMMCL (SegNeXt-B)
55.8%
Understanding Dark Scenes by Contrasting Multi-Modal Observations
DFormer-B
55.6%
DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation
0 of 116 row(s) selected.
Previous
Next
Semantic Segmentation On Nyu Depth V2 | SOTA | HyperAI