HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Nighttime Driving
Semantic Segmentation On Nighttime Driving
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
TADP
60.8
Text-image Alignment for Diffusion-based Perception
CoDA
59.2
CoDA: Instructive Chain-of-Domain Adaptation with Severity-Aware Visual Prompt Tuning
Refign (HRDA)
58.0
Refign: Align and Refine for Adaptation of Semantic Segmentation to Adverse Conditions
Refign (DAFormer)
56.8
Refign: Align and Refine for Adaptation of Semantic Segmentation to Adverse Conditions
MGCDA
49.4
Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation
DANNet (PSPNet)
47.70
DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation
GCMA
45.6
Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation
ERF-PSPNet
45.09
See Clearer at Night: Towards Robust Nighttime Semantic Segmentation through Day-Night Image Conversion
DANNet (DeepLab-v2)
44.98
DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation
DANNet (RefineNet)
42.36
DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation
CIConv
41.6
Zero-Shot Day-Night Domain Adaptation with a Physics Prior
DMAda
36.1
Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime
0 of 12 row(s) selected.
Previous
Next
Semantic Segmentation On Nighttime Driving | SOTA | HyperAI