HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Loveda
Semantic Segmentation On Loveda
Metriken
Category mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Category mIoU
Paper Title
U-Net (MaxViT-S)
56.16
U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
SFA-Net
54.9
SFA-Net: Semantic Feature Adjustment Network for Remote Sensing Image Segmentation
ViT-G12X4
54.4
A Billion-scale Foundation Model for Remote Sensing Images
SelectiveMAE+ViT-L
54.31
Scaling Efficient Masked Image Modeling on Large Remote Sensing Dataset
MAE+MTP(ViT-L+RVSA)
54.17
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
IMP+MTP(InternImage-XL)
54.17
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
AerialFormer-B
54.1
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
LSKNet-S
54.0
Large Selective Kernel Network for Remote Sensing Object Detection
LWGANet L2
53.6
LWGANet: A Lightweight Group Attention Backbone for Remote Sensing Visual Tasks
LOGCAN++
53.35
LOGCAN++: Adaptive Local-global class-aware network for semantic segmentation of remote sensing imagery
LSKNet-T
53.2
Large Selective Kernel Network for Remote Sensing Object Detection
DecoupleNet D2
53.1
DecoupleNet: A Lightweight Backbone Network With Efficient Feature Decoupling for Remote Sensing Visual Tasks
Hi-ResNet
52.6
Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation
ViTAE-B + RVSA-UperNet
52.44
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
UNetFormer
52.40
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
MAE+MTP(ViT-B+RVSA)
52.39
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
ViT-B + RVSA-UperNet
51.95
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
HRNetw32
49.79
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation
0 of 18 row(s) selected.
Previous
Next
Semantic Segmentation On Loveda | SOTA | HyperAI