HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Isprs Potsdam
Semantic Segmentation On Isprs Potsdam
Metriken
Mean F1
Mean IoU
Overall Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Mean F1
Mean IoU
Overall Accuracy
Paper Title
AerialFormer-B
94.1
89.1
93.9
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
ViT-G12X4
92.12
-
92.58
A Billion-scale Foundation Model for Remote Sensing Images
LSKNet-S
93.1
87.2
92.0
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
FT-UNetFormer
93.3
87.5
92.0
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
DC-Swin
93.25
87.56
92.0
A Novel Transformer Based Semantic Segmentation Scheme for Fine-Resolution Remote Sensing Images
EfficientUNets and Transformers
93.7
-
91.8
Semantic Labeling of High Resolution Images Using EfficientUNets and Transformers
IMP-ViTAEv2-S-UperNet
-
-
91.6
An Empirical Study of Remote Sensing Pretraining
MANet
-
-
91.318
Multiattention network for semantic segmentation of fine-resolution remote sensing images
ABCNet
-
-
91.3
ABCNet: Attentive Bilateral Contextual Network for Efficient Semantic Segmentation of Fine-Resolution Remote Sensing Images
UNetFormer
92.8
86.8
91.3
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
ViTAE-B + RVSA -UperNet
-
-
91.22
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
RSP-ViTAEv2-S-UperNet
-
-
91.21
An Empirical Study of Remote Sensing Pretraining
BANet
-
-
91.06
Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images
RSP-Swin-T-UperNet
-
-
90.78
An Empirical Study of Remote Sensing Pretraining
ViT-B + RVSA-UperNet
-
-
90.77
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
RSP-ResNet-50-UperNet
-
-
90.61
An Empirical Study of Remote Sensing Pretraining
PSPNet (SAP)
-
74.3
88.56
Stochastic Subsampling With Average Pooling
U-Net (ConvFormer-M36)
-
89.45
-
U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
SFA-Net
93.5
-
-
SFA-Net: Semantic Feature Adjustment Network for Remote Sensing Image Segmentation
0 of 19 row(s) selected.
Previous
Next
Semantic Segmentation On Isprs Potsdam | SOTA | HyperAI