HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Isaid
Semantic Segmentation On Isaid
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
SegNeXt-L
70.3
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
SegNeXt-B
69.9
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
AerialFormer-B
69.3
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
SegNeXt-S
68.8
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
AerialFormer-S
68.4
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
SegNeXt-T
68.3
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
FarSeg++@MiT-B2
67.9
FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
FarSeg++@ResNet-50
67.6
FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
AerialFormer-T
67.5
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
DeepLabV3 with R-50
67.03
Resolution-Aware Design of Atrous Rates for Semantic Segmentation Networks
FarSeg++@Swin-T
66.3
FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
IMP-ViTAEv2-S-UperNet
65.3
An Empirical Study of Remote Sensing Pretraining
FactSeg@ResNet-50
64.79
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery
ViTAE-B + RVSA-UperNet
64.49
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
RSP-ViTAEv2-S-UperNet
64.3
An Empirical Study of Remote Sensing Pretraining
RSP-Swin-T-UperNet
64.1
An Empirical Study of Remote Sensing Pretraining
ViT-B + RVSA-UperNet
63.85
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
FarSeg@ResNet-50
63.71
Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
RSP-ResNet-50-UperNet
61.6
An Empirical Study of Remote Sensing Pretraining
0 of 19 row(s) selected.
Previous
Next
Semantic Segmentation On Isaid | SOTA | HyperAI