HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Imagenet S
Semantic Segmentation On Imagenet S
Metriken
mIoU (test)
mIoU (val)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU (test)
mIoU (val)
Paper Title
TEC (ViT-B/16, 224x224, SSL+FT, mmseg)
62.5
63.2
Towards Sustainable Self-supervised Learning
SERE (ViT-B/16, 100ep, 224x224, SSL+FT)
63.3
63.0
SERE: Exploring Feature Self-relation for Self-supervised Transformer
TEC (ViT-B/16, 224x224, SSL+FT)
-
62.0
Towards Sustainable Self-supervised Learning
MAE (ViT-B/16, 224x224, SSL+FT, mmseg)
61.2
61.6
Masked Autoencoders Are Scalable Vision Learners
MAE (ViT-B/16, 224x224, SSL+FT)
60.2
61.0
Masked Autoencoders Are Scalable Vision Learners
SERE (ViT-S/16, 100ep, 224x224, SSL+FT, mmseg)
59.0
59.4
SERE: Exploring Feature Self-relation for Self-supervised Transformer
SERE (ViT-S/16, 100ep, 224x224, SSL+FT)
57.8
58.9
SERE: Exploring Feature Self-relation for Self-supervised Transformer
RF-ConvNext-Tiny (rfmerge, P4, 224x224, SUP)
51.1
51.3
RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
RF-ConvNext-Tiny (rfmultiple, P4, 224x224, SUP)
50.5
50.8
RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
RF-ConvNext-Tiny (rfsingle, P4, 224x224, SUP)
50.5
50.7
RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
ConvNext-Tiny (P4, 224x224, SUP)
48.8
48.7
A ConvNet for the 2020s
SERE (ViT-B/16, 100ep, 224x224, SSL)
48.2
48.6
SERE: Exploring Feature Self-relation for Self-supervised Transformer
TEC (ViT-B/16, 224x224, SSL, mmseg)
46.0
46.1
Towards Sustainable Self-supervised Learning
TEC (ViT-B/16, 224x224, SSL)
-
42.9
Towards Sustainable Self-supervised Learning
SERE (ViT-S/16, 100ep, 224x224, SSL)
40.2
41.0
SERE: Exploring Feature Self-relation for Self-supervised Transformer
SERE (ViT-S/16, 100ep, 224x224, SSL, mmseg)
40.5
41.0
SERE: Exploring Feature Self-relation for Self-supervised Transformer
MAE (ViT-B/16, 224x224, SSL, mmseg)
40.3
40.0
Masked Autoencoders Are Scalable Vision Learners
MAE (ViT-B/16, 224x224, SSL)
37.0
38.3
Masked Autoencoders Are Scalable Vision Learners
PASS (ResNet-50 D16, 224x224, LUSS)
20.8
21.6
Large-scale Unsupervised Semantic Segmentation
PASS (ResNet-50 D32, 224x224, LUSS)
20.3
21.0
Large-scale Unsupervised Semantic Segmentation
0 of 20 row(s) selected.
Previous
Next
Semantic Segmentation On Imagenet S | SOTA | HyperAI