HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Semantic Segmentation
Semantic Segmentation On Dada Seg
Semantic Segmentation On Dada Seg
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
Repository
CLAN
28.76
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation
DNL (ResNet-101)
19.7
Disentangled Non-Local Neural Networks
ResNet-50
18.96
Deep Residual Learning for Image Recognition
ISSAFE
29.97
ISSAFE: Improving Semantic Segmentation in Accidents by Fusing Event-based Data
SIM
26.85
Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation
HRNet (ACDC)
27.5
Deep High-Resolution Representation Learning for Visual Recognition
MobileNetV2
16.05
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV3 (MobileNetV3small)
18.2
Searching for MobileNetV3
SETR (PUP, Transformer-Large)
31.8
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
SegFormer (MiT-B3)
27.0
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
ResNet-101
23.60
Deep Residual Learning for Image Recognition
ERFNet
9.0
ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation
FDA
24.45
FDA: Fourier Domain Adaptation for Semantic Segmentation
EDCNet
32.04
Exploring Event-driven Dynamic Context for Accident Scene Segmentation
DeepLabV3+ (ACDC)
26.8
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Fast-SCNN
26.32
Fast-SCNN: Fast Semantic Segmentation Network
Trans4Trans
39.20
Trans4Trans: Efficient Transformer for Transparent Object and Semantic Scene Segmentation in Real-World Navigation Assistance
SETR (MLA, Transformer-Large)
30.4
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
MMUDA
46.97
Towards Robust Semantic Segmentation of Accident Scenes via Multi-Source Mixed Sampling and Meta-Learning
PSPNet (ResNet-101)
20.1
Pyramid Scene Parsing Network
0 of 28 row(s) selected.
Previous
Next