HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Coco Stuff Test
Semantic Segmentation On Coco Stuff Test
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
VPNeXt
53.7
VPNeXt -- Rethinking Dense Decoding for Plain Vision Transformer
EVA
53.4%
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
RSSeg-ViT-L (BEiT pretrain)
52.6%
Representation Separation for Semantic Segmentation with Vision Transformers
RSSeg-ViT-L
52.0%
Representation Separation for Semantic Segmentation with Vision Transformers
SegViT (ours)
50.3%
SegViT: Semantic Segmentation with Plain Vision Transformers
SenFormer (Swin-L)
50.1%
Efficient Self-Ensemble for Semantic Segmentation
CAA (Efficientnet-B7)
45.4%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
HRNetV2 + OCR + RMI (PaddleClas pretrained)
45.2%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
CAA (ResNet-101)
41.2%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
DRAN(ResNet-101)
41.2%
Scene Segmentation with Dual Relation-aware Attention Network
OCR (HRNetV2-W48)
40.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
EMANet
39.9%
Expectation-Maximization Attention Networks for Semantic Segmentation
DANet (ResNet-101)
39.7%
Dual Attention Network for Scene Segmentation
SVCNet (ResNet-101)
39.6%
Semantic Correlation Promoted Shape-Variant Context for Segmentation
OCR (ResNet-101)
39.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
Asymmetric ALNN
37.2%
Asymmetric Non-local Neural Networks for Semantic Segmentation
CCL (ResNet-101)
35.7%
Context Contrasted Feature and Gated Multi-Scale Aggregation for Scene Segmentation
RefineNet (ResNet-101)
33.6%
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
DAG-RNN (VGG-16)
31.2%
DAG-Recurrent Neural Networks For Scene Labeling
FCN (VGG-16)
22.7%
Fully Convolutional Networks for Semantic Segmentation
0 of 20 row(s) selected.
Previous
Next
Semantic Segmentation On Coco Stuff Test | SOTA | HyperAI