HyperAI

Semantic Segmentation On Bdd100K Val

Metriken

mIoU

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnamemIoU
encoder-decoder-with-atrous-separable63.6
dsnet-a-novel-way-to-use-atrous-convolutions64.6
partial-order-pruning-for-best-speedaccuracy42.5(82.3fps)
sernet-former-semantic-segmentation-by67.42
fast-and-accurate-scene-parsing-via-bi53.4(42.1fps)
expectation-maximization-attention-networks61.4
bisenet-bilateral-segmentation-network-for53.8(45.1fps)
object-contextual-representations-for60.1
pyramid-scene-parsing-network62.3
sfnet-faster-accurate-and-domain-agnostic60.6(194.5FPS 4090)
icnet-for-real-time-semantic-segmentation-on52.4(39.5fps)
partial-order-pruning-for-best-speedaccuracy47.8(53.4fps)
what-s-there-in-the-dark53.52
semantic-flow-for-fast-and-accurate-scene60.6(132.5FPS 4090)
vltseg-simple-transfer-of-clip-based-vision72.5
semantic-flow-for-fast-and-accurate-scene55.4(70.3fps)
rethinking-bisenet-for-real-time-semantic52.1(45.8FPS)
sfnet-faster-accurate-and-domain-agnostic60.6(161.3FPS 4090)
dsnet-a-novel-way-to-use-atrous-convolutions62.6(172.2FPS 4090)
rethinking-bisenet-for-real-time-semantic53.8(33.0FPS)
mrfp-learning-generalizable-semantic39.55
dual-attention-network-for-scene-segmentation62.8
mrfp-learning-generalizable-semantic31.44
semantic-flow-for-fast-and-accurate-scene60.2(208FPS 4090)