HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Ade20K Val
Semantic Segmentation On Ade20K Val
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
BEiT-3
62.8
Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks
ViT-CoMer
62.1
ViT-CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions
EVA
61.5
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
FD-SwinV2-G
61.4
Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation
OneFormer (InternImage-H, emb_dim=256, multi-scale, 896x896)
60.8
OneFormer: One Transformer to Rule Universal Image Segmentation
MaskDINO-SwinL
60.8
Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation
ViT-Adapter-L (Mask2Former, BEiT pretrain)
60.5
Vision Transformer Adapter for Dense Predictions
SERNet-Former_v2
59.35
SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks
OneFormer (DiNAT-L, multi-scale, 896x896)
58.6
OneFormer: One Transformer to Rule Universal Image Segmentation
ViT-Adapter-L (UperNet, BEiT pretrain)
58.4
Vision Transformer Adapter for Dense Predictions
RSSeg-ViT-L(BEiT pretrain)
58.4
Representation Separation for Semantic Segmentation with Vision Transformers
OneFormer (DiNAT-L, multi-scale, 640x640)
58.4
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (Swin-L, multi-scale, 896x896)
58.3
OneFormer: One Transformer to Rule Universal Image Segmentation
SeMask (SeMask Swin-L FaPN-Mask2Former)
58.2
SeMask: Semantically Masked Transformers for Semantic Segmentation
SeMask (SeMask Swin-L MSFaPN-Mask2Former)
58.2
SeMask: Semantically Masked Transformers for Semantic Segmentation
DiNAT-L (Mask2Former)
58.1
Dilated Neighborhood Attention Transformer
Mask2Former (Swin-L-FaPN, multiscale)
57.7
Masked-attention Mask Transformer for Universal Image Segmentation
OneFormer (Swin-L, multi-scale, 640x640)
57.7
OneFormer: One Transformer to Rule Universal Image Segmentation
SeMask (SeMask Swin-L Mask2Former)
57.5
SeMask: Semantically Masked Transformers for Semantic Segmentation
SenFormer (BEiT-L)
57.1
Efficient Self-Ensemble for Semantic Segmentation
0 of 94 row(s) selected.
Previous
Next
Semantic Segmentation On Ade20K Val | SOTA | HyperAI