HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Semantic Entity Labeling
Semantic Entity Labeling On Funsd
Semantic Entity Labeling On Funsd
Metriken
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
F1
Paper Title
Repository
LayoutLMv2LARGE
84.2
LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding
StrucTexTv2 (large)
91.82
StrucTexTv2: Masked Visual-Textual Prediction for Document Image Pre-training
Doc2Graph
82.25
Doc2Graph: a Task Agnostic Document Understanding Framework based on Graph Neural Networks
XDoc1M
89.4
XDoc: Unified Pre-training for Cross-Format Document Understanding
LILT
88.41
LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding
LayoutLMv3 Large
92.08
LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking
RORE (GeoLayoutLM)
91.84
Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding
TPP (LayoutMask)
85.16
Reading Order Matters: Information Extraction from Visually-rich Documents by Token Path Prediction
-
DocTr
84
DocTr: Document Transformer for Structured Information Extraction in Documents
-
ERNIE-Layoutlarge
93.12
ERNIE-Layout: Layout Knowledge Enhanced Pre-training for Visually-rich Document Understanding
LayoutLMv2BASE
82.76
LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding
LayoutMask (large)
93.20
LayoutMask: Enhance Text-Layout Interaction in Multi-modal Pre-training for Document Understanding
-
GeoLayoutLM
92.86
GeoLayoutLM: Geometric Pre-training for Visual Information Extraction
LayoutMask (base)
92.91
LayoutMask: Enhance Text-Layout Interaction in Multi-modal Pre-training for Document Understanding
-
StrucTexTv2 (small)
89.23
StrucTexTv2: Masked Visual-Textual Prediction for Document Image Pre-training
0 of 15 row(s) selected.
Previous
Next