HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Semantische Korrespondenz
Semantic Correspondence On Pf Pascal
Semantic Correspondence On Pf Pascal
Metriken
PCK
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
PCK
Paper Title
Repository
HPF
88.3
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
-
CHM
91.6
Convolutional Hough Matching Networks
-
SD+DINO (Supervised)
93.6
A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
-
VAT
92.3
Cost Aggregation Is All You Need for Few-Shot Segmentation
-
DHPF
90.7
Learning to Compose Hypercolumns for Visual Correspondence
-
CATs++
93.8
CATs++: Boosting Cost Aggregation with Convolutions and Transformers
-
SCOT
88.8
Semantic Correspondence as an Optimal Transport Problem
NC-Net
-
Neighbourhood Consensus Networks
-
GeoAware-SC (Supervised)
95.1
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
-
GeoAware-SC (Zero-Shot)
82.6
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
-
VAT (ECCV)
92.3
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
-
GeoAware-SC (Supervised, AP-10K P.T.)
95.7
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
-
CATs
92.6
CATs: Cost Aggregation Transformers for Visual Correspondence
-
ANCNet
88.7
Correspondence Networks with Adaptive Neighbourhood Consensus
-
0 of 14 row(s) selected.
Previous
Next
Semantic Correspondence On Pf Pascal | SOTA | HyperAI