HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Scene Text Recognition
Scene Text Recognition On Svtp
Scene Text Recognition On Svtp
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
CLIP4STR-L
97.4
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
DPAN
89.0
Look Back Again: Dual Parallel Attention Network for Accurate and Robust Scene Text Recognition
CLIP4STR-B
97.2
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
CLIP4STR-L (DataComp-1B)
98.1
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
SIGA_T
90.5
Self-supervised Implicit Glyph Attention for Text Recognition
MATRN
90.6
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features
CCD-ViT-Base
96.1
Self-supervised Character-to-Character Distillation for Text Recognition
-
CCD-ViT-Small
92.7
Self-supervised Character-to-Character Distillation for Text Recognition
-
CCD-ViT-Tiny
91.6
Self-supervised Character-to-Character Distillation for Text Recognition
-
DTrOCR 105M
98.6
DTrOCR: Decoder-only Transformer for Optical Character Recognition
CDistNet (Ours)
89.77
CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition
PARSeq
95.7±0.9
Scene Text Recognition with Permuted Autoregressive Sequence Models
CPPD
96.7
Context Perception Parallel Decoder for Scene Text Recognition
DiffusionSTR
89.2
DiffusionSTR: Diffusion Model for Scene Text Recognition
-
CLIP4STR-L*
98.13
An Empirical Study of Scaling Law for OCR
S-GTR
90.6
Visual Semantics Allow for Textual Reasoning Better in Scene Text Recognition
MGP-STR
98.3
Multi-Granularity Prediction for Scene Text Recognition
0 of 17 row(s) selected.
Previous
Next