HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Szene-Text-Erkennung
Scene Text Detection On Icdar 2017 Mlt 1
Scene Text Detection On Icdar 2017 Mlt 1
Metriken
F-Measure
Precision
Recall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
F-Measure
Precision
Recall
Paper Title
Repository
FOTS MS
70.75%
81.86
62.3
FOTS: Fast Oriented Text Spotting with a Unified Network
-
GNNets
74.54%
79.63
70.06
Geometry Normalization Networks for Accurate Scene Text Detection
-
CharNet R-50
73.42%
77.07
70.1
Convolutional Character Networks
-
PMTD*
80.13%
84.42
76.25
Pyramid Mask Text Detector
-
FOTS
67.25%
80.95
57.51
FOTS: Fast Oriented Text Spotting with a Unified Network
-
SBD
79.47%
82.75
76.44
Exploring the Capacity of an Orderless Box Discretization Network for Multi-orientation Scene Text Detection
-
CharNet H-88
75.77%
81.27
70.97
Convolutional Character Networks
-
CRAFT
-
80.6
68.2
Character Region Awareness for Text Detection
-
PAN
74.3%
80
69.8
Mask R-CNN with Pyramid Attention Network for Scene Text Detection
-
Corner Localization (single-scale)
66.8%
83.8
55.6
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation
-
SPCNET
74.1%
80.6
68.6
Scene Text Detection with Supervised Pyramid Context Network
-
PSENet (ResNet-152)
72.13%
75.35
69.18
Shape Robust Text Detection with Progressive Scale Expansion Network
-
Corner Localization (multi-scale)
72.4%
74.3
70.6
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation
-
PSENet-1s
72.45%
77.01
68.4
Shape Robust Text Detection with Progressive Scale Expansion Network
-
0 of 14 row(s) selected.
Previous
Next
Scene Text Detection On Icdar 2017 Mlt 1 | SOTA | HyperAI