HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Retina-Gefäß-Segmentierung
Retinal Vessel Segmentation On Drive
Retinal Vessel Segmentation On Drive
Metriken
AUC
F1 score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
F1 score
Paper Title
Repository
IterNet
0.9816
0.8205
IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks
-
ConvMixer
-
0.8245
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
BCDU-Net (d=3)
0.9789
0.8224
Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions
-
Study Group Learning
0.9886
0.8316
Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels
-
ConvMixer-Light
-
0.8215
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
ET-Net
-
-
ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation
-
MERIT-GCASCADE
-
0.8290
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
-
U-Net
0.9755
0.8142
U-Net: Convolutional Networks for Biomedical Image Segmentation
-
SA-UNet
0.9864
0.8263
SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation
-
RV-GAN
-
-
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network
-
VGN
0.9802
0.8263
Deep Vessel Segmentation By Learning Graphical Connectivity
-
U-Net
0.9855
-
Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation
-
PVT-GCASCADE
-
0.8210
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
-
FR-UNet
0.9889
0.8316
Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation
DUNet
0.9802
0.8237
DUNet: A deformable network for retinal vessel segmentation
-
FSG-Net
0.9823
0.8322
Full-scale Representation Guided Network for Retinal Vessel Segmentation
-
LadderNet
0.9793
0.8202
LadderNet: Multi-path networks based on U-Net for medical image segmentation
-
CE-Net
0.9779
-
CE-Net: Context Encoder Network for 2D Medical Image Segmentation
-
Swin-Res-Net
0.9931
-
Enhancing Retinal Vascular Structure Segmentation in Images With a Novel Design Two-Path Interactive Fusion Module Model
-
Residual U-Net
0.9779
0.8149
Road Extraction by Deep Residual U-Net
-
0 of 21 row(s) selected.
Previous
Next
Retinal Vessel Segmentation On Drive | SOTA | HyperAI