HyperAI

Retinal Vessel Segmentation On Drive

Metriken

AUC
F1 score

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAUCF1 score
iternet-retinal-image-segmentation-utilizing0.98160.8205
deep-learning-architectures-for-diagnosis-of-0.8245
bi-directional-convlstm-u-net-with-densley0.97890.8224
study-group-learning-improving-retinal-vessel0.98860.8316
deep-learning-architectures-for-diagnosis-of-0.8215
et-net-a-generic-edge-attention-guidance--
g-cascade-efficient-cascaded-graph-0.8290
u-net-convolutional-networks-for-biomedical0.97550.8142
sa-unet-spatial-attention-u-net-for-retinal0.98640.8263
rv-gan-retinal-vessel-segmentation-from--
deep-vessel-segmentation-by-learning0.98020.8263
exploring-the-limits-of-data-augmentation-for0.9855-
g-cascade-efficient-cascaded-graph-0.8210
full-resolution-network-and-dual-threshold0.98890.8316
dunet-a-deformable-network-for-retinal-vessel0.98020.8237
full-scale-representation-guided-network-for0.98230.8322
laddernet-multi-path-networks-based-on-u-net0.97930.8202
ce-net-context-encoder-network-for-2d-medical0.9779-
enhancing-retinal-vascular-structure0.9931-
road-extraction-by-deep-residual-u-net0.97790.8149
segmentation-of-blood-vessels-optic-disc-0.75